Python Reference Manual
Release 2.3.5

Guido van Rossum
Fred L. Drake, Jr., editor

February 8, 2005

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-
level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for
rapid application development, as well as for use as a scripting or glue language to connect existing components
together. Python’s simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program
maintenance. Python supports modules and packages, which encourages program modularity and code reuse. The
Python interpreter and the extensive standard library are available in source or binary form without charge for all
major platforms, and can be freely distributed.

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to
be exact and complete. The semantics of non-essential built-in object types and of the built-in functions and
modules are described in thg/thon Library ReferenceFor an informal introduction to the language, see the
Python Tutorial For C or C++ programmers, two additional manuals exisktending and Embedding the Python
Interpreter describes the high-level picture of how to write a Python extension module, aritiythen/C API
Reference Manualescribes the interfaces available to € rogrammers in detalil.

CONTENTS

Introduction 1

1.1 Notation e e 1
Lexical analysis 3

2.1 LINeSHUCIUre o e e 3
2.2 Othertokens. e 6
2.3 ldentifiersand keywords L e 6
2.4 Literals. e e e e e e 7
2.5 0perators e e 10
2.6 Delimiters e 10
Data model 13

3.1 Objects,valuesandtypes 13
3.2 Thestandardtype hierarchy. e 14
3.3 Specialmethodnames. e 20
Execution model 31

4.1 Namingandbinding. e e 31
4.2 EXCEPtiONS. e e e e 32
Expressions 35

5.1 Arithmetic CONVersions e e e 35
5.2 AIOMS e e 35
5.3 Primaries. 37
5.4 The power operator. o o i i i i e e 40
5.5 Unaryarithmeticoperations 40
5.6 Binary arithmeticoperations. e 41
5.7 Shiftingoperations e 41
5.8 Binary bit-wise operations e e 42
5.9 COMPariSoNS. . . . v v o v e e 42
5.10 Boolean operations. e 43
5.11 Lambdas. e e 44
5.12 EXpressionlists e e 44
5.13 Evaluationorder. 44
514 SUMMATY. o e e e e e e e e 44
Simple statements a7

6.1 Expressionstatements. e e e 47
6.2 Assertstatements. e e e 47
6.3 Assignmentstatements. L L L 48
6.4 Thepass statement. L e 50
6.5 Thedel statement e 50
6.6 Theprint statement. e 50
6.7 Thereturn statement. 51

6.8 Theyield statement. e 51
6.9 Theraise statement. 52
6.10 Thebreak statement. e 52
6.11 Thecontinue statement e e 52
6.12 Theimport statement. e 53
6.13 Theglobal statement. e 54
6.14 Theexec statement. e e e e 55
7 Compound statements 57
7.1 Theif statement e 58
7.2 Thewhile statement. e 58
7.3 Thefor statement e 58
7.4 Thetry statement e 59
7.5 Functiondefinitions. e 60
7.6 Classdefinitions. e e 60
8 Top-level components 63
8.1 Complete Pythonprograms e e e 63
8.2 Fileinput. e e 63
8.3 Interactive INput. e e 63
8.4 EXpressioninput e 64
A History and License 65
Al Historyofthesoftware 65
A.2 Terms and conditions for accessing or otherwise using Python 66
Index 69

CHAPTER
ONE

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, | chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but
will leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python
from this document alone, you might have to guess things and in fact you would probably end up implementing
quite a different language. On the other hand, if you are using Python and wonder what the precise rules about a
particular area of the language are, you should definitely be able to find them here. If you would like to see a more
formal definition of the language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation
may change, and other implementations of the same language may work differently. On the other hand, there
is currently only one Python implementation in widespread use (although a second one now exists!), and its
particular quirks are sometimes worth being mentioned, especially where the implementation imposes additional
limitations. Therefore, you'll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are not documented
here, but in the separakg/thon Library Referencdocument. A few built-in modules are mentioned when they
interact in a significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following
style of definition:

name: Ic_letter (Ic_letter | "_")*

LU T

Ic_letter: "a"..."z

The first line says that aame is anlc _letter followed by a sequence of zero or mdoe _letter s and
underscores. Aiic _letter in turn is any of the single charactera’ ‘through ‘z’. (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A vertida) lsanged to
separate alternatives; it is the least binding operator in this notation. A:3targans zero or more repetitions of

the preceding item; likewise, a plus)(means one or more repetitions, and a phrase enclosed in square brackets

([1) means zero or one occurrences (in other words, the enclosed phrase is optional)arite operators

bind as tightly as possible; parentheses are used for grouping. Literal strings are enclosed in quotes. White space
is only meaningful to separate tokens. Rules are normally contained on a single line; rules with many alternatives
may be formatted alternatively with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated
by three dots mean a choice of any single character in the given (inclusive) rangeiotharacters. A phrase
between angular brackets.(.>) gives an informal description of the symbol defined; e.g., this could be used

to describe the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

2 Chapter 1. Introduction

CHAPTER
TWO

Lexical analysis

A Python program is read bygarser Input to the parser is a streamtokens generated by thkexical analyzer
This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bitscii character set for program text. New in version 2.3: An encoding declaration can
be used to indicate that string literals and comments use an encoding different from ASCII.. For compatibility
with older versions, Python only warns if it finds 8-bit characters; those warnings should be corrected by either
declaring an explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the 1/0O devices connected to the program but is generally a superset of
ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1
(anAscii superset that covers most western languages that use the Latin alphabet), but it is possible that in the
future Unicode text editors will become common. These generally use the UTF-8 encoding, which issaso an
superset, but with very different use for the characters with ordinals 128-255. While there is no consensus on this
subject yet, it is unwise to assume either Latin-1 or UTF-8, even though the current implementation appears to
favor Latin-1. This applies both to the source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a numberlogical lines

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical
line is constructed from one or mopéiysical lineshy following the explicit or implicitline joiningrules.

2.1.2 Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines. NDx, this is the
Ascll LF (linefeed) character. On Windows, it is thscil sequence CR LF (return followed by linefeed). On
Macintosh, it is theascii CR (return) character.

2.1.3 Comments

A comment starts with a hash charactg) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments
are ignored by the syntax; they are not tokens.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression
‘coding[=:]\s*([\w- _.]+) 4 this comment is processed as an encoding declaration; the first group of this
expression names the encoding of the source code file. The recommended forms of this expression are

-*- coding: <encoding-name> -*-

which is recognized also by GNU Emacs, and

vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order
mark (\xef\xbb\xbf’), the declared file encoding is UTF-8 (this is supported, among others, by Microsoft's
notepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical
analysis, in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are

converted to Unicode for syntactical analysis, then converted back to their original encoding before interpretation

starts. The encoding declaration must appear on a line of its own.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash charadcees (follows: when a
physical line ends in a backslash that is not part of a string literal or comment, it is joined with the following
forming a single logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24\
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash
does not continue a token except for string literals (i.e., tokens other than string literals cannot be split across
physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without
using backslashes. For example:

month_names = [‘Januari’, 'Februari’, 'Maart, # These are the
"April’, 'Mer’, "Juni’, # Dutch names
"Juli, 'Augustus’, 'September’, # for the months

'Oktober’, 'November’, 'December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly
continued lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

4 Chapter 2. Lexical analysis

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one
containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of
the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to
and including the replacement is a multiple of eight (this is intended to be the same rule as useck hyTbhe

total number of spaces preceding the first non-blank character then determines the line’s indentation. Indentation
cannot be split over multiple physical lines using backslashes; the whitespace up to the first backslash determines
the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to
use a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different
platforms may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations
above. Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance,
they may reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again.
The numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each
logical line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is
larger, it is pushed on the stack, and one INDENT token is generated. If it is smateistbe one of the numbers
occurring on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a
DEDENT token is generated. At the end of the file, a DEDENT token is generated for each number remaining on
the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of |
if len(l) <= 1:
return [l]
r=1]
for i in range(len(l)):
s = I[:i] + I[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)
return r

The following example shows various indentation errors:

2.1. Line structure 5

def perm(): # error: first line indented
for i in range(len(l)): # error: not indented
s = L] + I[i+1:]
p = perm(I[:i] + I[i+1:]) # error: unexpected indent
for x in p:
r.append(l[i:i+1] + Xx)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation ofreturn r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens
Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can

be used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation
could otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens eidntifiers keywords lit-

erals operators anddelimiters Whitespace characters (other than line terminators, discussed earlier) are not
tokens, but serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that
forms a legal token, when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to amme$ are described by the following lexical definitions:

identifier = (letter|" _") (letter | digit | ")
letter == lowercase | uppercase

lowercase n= 0 Matlzt

uppercase n= 0 "ANLZY

digit m= """

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved word&egwordf the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

Note that although the identifi@s can be used as part of the syntaxrmoport statements, it is not currently a
reserved word.

In some future version of Python, the identifieis andNone will both become keywords.

6 Chapter 2. Lexical analysis

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns
of leading and trailing underscore characters:

_* Notimported by from module import * ’. The special identifier’ is used in the interactive interpreter
to store the result of the last evaluation; it is stored in_theuiltin -~ __ module. When not in interactive
mode, _’ has no special meaning and is not defined. See section 6.12jifigwt statement.”

Note: The name L’ is often used in conjunction with internationalization; refer to the documentation for
thegettext modulefor more information on this convention.

__*__ System-defined names. These names are defined by the interpreter and it's implementation (including
the standard library); applications should not expect to define additional names using this convention. The
set of names of this class defined by Python may be extended in future versions. See section 3.3, “Special
method names.”

__* Class-private names. Names in this category, when used within the context of a class definition, are re-
written to use a mangled form to help avoid name clashes between “private” attributes of base and derived
classes. See section 5.2.1, “Identifiers (Names).”

2.4 Literals
Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

stringliteral
stringprefix

[stringprefix](shortstring | longstring)
rp "ut | Mur" | "R"] MUY | "URT MU | "uR"

shortstring = """ shortstringitem* ™" | "™ shortstringitem* ™
longstring m= " Jongstringitem* "

| ™" longstringitem* ™"
shortstringitem = shortstringchar | escapeseq

longstringitem longstringchar | escapeseq

shortstringchar <any ASCIl character except "\" or newline or the quote>
longstringchar = <any ASCII character except "\">

escapeseq »= "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix and the rest of the string literal.

In plain English: String literals can be enclosed in matching single quojes @double quotes'(). They can also

be enclosed in matching groups of three single or double quotes (these are generally refertaglescqasted

string9. The backslash\() character is used to escape characters that otherwise have a special meaning, such
as newline, backslash itself, or the quote character. String literals may optionally be prefixed with a letter *

or ‘R; such strings are callecaw stringsand use different rules for interpreting backslash escape sequences. A
prefix of ‘u’ or ‘U makes the string a Unicode string. Unicode strings use the Unicode character set as defined
by the Unicode Consortium and ISO 10646. Some additional escape sequences, described below, are available in
Unicode strings. The two prefix characters may be combined; in this egseust appear before °.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
guotes in a row terminate the string. (A “quote” is the character used to open the string, i.e. @ittie)

Unless anr’ or ‘R prefix is present, escape sequences in strings are interpreted according to rules similar to those
used by Standard C. The recognized escape sequences are:

2.4. Literals 7

Escape Sequence Meaning Notes
\ newline Ignored

\\ Backslash\()

\ Single quote’()

\" Double quote'()

\a Ascli Bell (BEL)

\b Ascll Backspace (BS)

\f Ascll Formfeed (FF)

\n Ascll Linefeed (LF)

\N{ namé Character namedamein the Unicode database (Unicode only)

\r AsclI Carriage Return (CR)

\t Ascll Horizontal Tab (TAB)

\U XXXX Character with 16-bit hex valuexxx(Unicode only) (1)
AU XXXXXXXX Character with 32-bit hex valuexxxxxUnicode only) (2)
\v Ascll Vertical Tab (VT)

\ ooo AsclII character with octal valueoo 3)
\x hh Ascll character with hex valuieh 4)

Notes:

(1) Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

(2) Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP)
will be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default). Individual
code units which form parts of a surrogate pair can be encoded using this escape sequence.

(3) Asin Standard C, up to three octal digits are accepted.

(4) Unlike in Standard C, at most two hex digits are accepted.

Unlike Standard C, all unrecognized escape sequences are left in the string unchandked haxkslash is left

in the string (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output
is more easily recognized as broken.) It is also important to note that the escape sequences marked as “(Unicode
only)” in the table above fall into the category of unrecognized escapes for non-Unicode string literals.

When ant’ or ‘'R prefix is present, a character following a backslash is included in the string without change,
andall backslashes are left in the string-or example, the string litera"\n" consists of two characters: a
backslash and a lowercas®.’ String quotes can be escaped with a backslash, but the backslash remains in the
string; for exampler"\"" is a valid string literal consisting of two characters: a backslash and a double quote;
r'\" is not a valid string literal (even a raw string cannot end in an odd number of backslashes). Specifically,
a raw string cannot end in a single backsla@&ince the backslash would escape the following quote character).
Note also that a single backslash followed by a newline is interpreted as those two characters as part of the string,
notas a line continuation.

When an t’ or ‘R prefix is used in conjunction with au® or ‘U prefix, then the\luXXXX escape sequence is
processed whilall other backslashes are left in the stringor example, the string literak"\u0062\n" con-

sists of three Unicode characters: ‘LATIN SMALL LETTER B’, ‘REVERSE SOLIDUS’, and ‘LATIN SMALL
LETTER N'. Backslashes can be escaped with a preceding backslash; however, both remain in the string. As a
result,\uXXXX escape sequences are only recognized when there are an odd number of backslashes.

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are
allowed, and their meaning is the same as their concatenation. Thelg" 'world’ is equivalent to
"helloworld" . This feature can be used to reduce the number of backslashes needed, to split long strings
conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]** # letter, digit or underscore

)

8 Chapter 2. Lexical analysis

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+' operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary num-
bers. There are no complex literals (complex numbers can be formed by adding a real number and an imaginary
number).

Note that numeric literals do not include a sign; a phrase-likés actually an expression composed of the unary
operator - ' and the literall.

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger = integer ("I" | "L")
integer decimalinteger | octinteger | hexinteger

decimalinteger = nonzerodigit digit* | "0"
octinteger = "0" octdigit+

hexinteger = "0 ("' | "X") hexdigit+
nonzerodigit = "ot

octdigit = "o

hexdigit 2= digit | "a".."f" | "A".F"

Although both lower caseé ° and upper casd.’ are allowed as suffix for long integers, it is strongly recommended
to always usel'’, since the letterl’’ looks too much like the digit1’.

Plain integer decimal literals that are above the largest representable plain integer (e.g., 2147483647 when us-
ing 32-bit arithmetic) are accepted as if they were long integers instead. Octal and hexadecimal literals behave
similarly, but when in the range just above the largest representable plain integer but below the largest unsigned
32-bit number (on a machine using 32-bit arithmetic), 4294967296, they are taken as the negative plain integer
obtained by subtracting 4294967296 from their unsigned value. There is no limit for long integer literals apart
from what can be stored in available memory. For example, Oxdeadbeef is taken, on a 32-bit machine, as the value
-559038737, while Oxdeadbeeffeed is taken as the value 244837814107885L.

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177 0x80000000
3L 79228162514264337593543950336L 0377L 0x100000000L
79228162514264337593543950336 Oxdeadbeeffeed

2.4.5 Floating point literals

Floating point literals are described by the following lexical definitions:

floathumber = pointfloat | exponentfloat
pointfloat = [intpart] fraction | intpart "."
exponentfloat = (intpart | pointfloat) exponent
intpart = digit+

fraction n= " digit+

exponent = (e" | "EM) [+] "] digit+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted
using radix 10. For exampleQ77e010 ’ is legal, and denotes the same number7®10 . The allowed range
of floating point literals is implementation-dependent. Some examples of floating point literals:

2.4. Literals 9

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase likés actually an expression composed of the operator
- and the literall.

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:
imagnumber = (floatnumber | intpart) (j* | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a
pair of floating point numbers and have the same restrictions on their range. To create a complex number with a
nonzero real part, add a floating point number to it, €é334j) . Some examples of imaginary literals:

3.14j 10 10j .001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * *x / I %
<< >> & [h -
< > <= >= == I= <>

The comparison operatoss and!= are alternate spellings of the same operdtoris the preferred spelling;>
is obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() i] { }

/= /= %=
>>= <<= k=

+
1
e
|
*
I

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special
meaning as an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically
as delimiters, but also perform an operation.

The following printingAscii characters have special meaning as part of other tokens or are otherwise significant
to the lexical analyzer:

The following printingAscil characters are not used in Python. Their occurrence outside string literals and
comments is an unconditional error:

10 Chapter 2. Lexical analysis

2.6. Delimiters

11

12

CHAPTER
THREE

Data model

3.1 Objects, values and types

Objectsare Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer,” code
is also represented by objects.)

Every object has an identity, a type and a value. An objadéstity never changes once it has been created;
you may think of it as the object’'s address in memory. Tike' ‘operator compares the identity of two objects;
theid() function returns an integer representing its identity (currently implemented as its address). An object’s
typeis also unchangeable.An object’s type determines the operations that the object supports (e.g., “does it
have a length?”) and also defines the possible values for objects of that typéyp&(e function returns an

object’s type (which is an object itself). Tvalueof some objects can change. Objects whose value can change
are said to benutable objects whose value is unchangeable once they are created areiaiiathble (The

value of an immutable container object that contains a reference to a mutable object can change when the latter’s
value is changed; however the container is still considered immutable, because the collection of objects it contains
cannot be changed. So, immutability is not strictly the same as having an unchangeable value, it is more subtle.)
An object’s mutability is determined by its type; for instance, numbers, strings and tuples are immutable, while
dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected.
An implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implemen-
tation quality how garbage collection is implemented, as long as no objects are collected that are still reachable.
(Implementation note: the current implementation uses a reference-counting scheme with (optional) delayed de-
tection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. Segttlwn Library Referencier information on
controlling the collection of cyclic garbage.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would nor-
mally be collectable. Also note that catching an exception wittnya ‘..except ' statement may keep objects
alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that
these resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to
happen, such objects also provide an explicit way to release the external resource, usloayf)a method.

Programs are strongly recommended to explicitly close such objects.tryhe. finally ' statement provides

a convenient way to do this.

Some objects contain references to other objects; these are catisdners Examples of containers are tuples,

lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value
of a container, we imply the values, not the identities of the contained objects; however, when we talk about the
mutability of a container, only the identities of the immediately contained objects are implied. So, if an immutable
container (like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

1Since Python 2.2, a gradual merging of types and classes has been started that makes this and a few other assertions made in this manual
not 100% accurate and complete: for examplis, fitow possible in some cases to change an object’s type, under certain controlled conditions.
Until this manual undergoes extensive revision, it must now be taken as authoritative only regarding “classic classes”, that are still the default,
for compatibility purposes, in Python 2.2 and 2.3.

13

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object
with the same type and value, while for mutable objects this is not allowed. E.g.,afterl; b = 1 ’, aand

b may or may not refer to the same object with the value one, depending on the implementation, bat after *

[I; d =1 ' candd are guaranteed to refer to two different, unique, newly created empty lists. (Note that

= d = [] ’assignsthe same object to battandd.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the
type hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes.” These are attributes that
provide access to the implementation and are not intended for general use. Their definition may change in the
future.

None This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameNone. It is used to signify the absence of a value in many situations, e.g., it is returned from
functions that don’t explicitly return anything. Its truth value is false.

Notimplemented This type has a single value. There is a single object with this value. This object is accessed
through the built-in namBlotimplemented . Numeric methods and rich comparison methods may return
this value if they do not implement the operation for the operands provided. (The interpreter will then try
the reflected operation, or some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameEllipsis . Itis used to indicate the presence of the ‘'’ syntax in a slice. Its truth value
is true.

Numbers These are created by numeric literals and returned as results by arithmetic operators and arithmetic
built-in functions. Numeric objects are immutable; once created their value never changes. Python num-
bers are of course strongly related to mathematical numbers, but subject to the limitations of numerical
representation in computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

Integers These represent elements from the mathematical set of whole numbers.
There are three types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range
may be larger on machines with a larger natural word size, but not smaller.) When the result of an
operation would fall outside this range, the result is normally returned as a long integer (in some
cases, the exceptic@verflowError is raised instead). For the purpose of shift and mask
operations, integers are assumed to have a binary, 2’s complement notation using 32 or more bits,
and hiding no bits from the user (i.e., all 4294967296 different bit patterns correspond to different
values).

Long integers These represent numbers in an unlimited range, subject to available (virtual) memory
only. For the purpose of shift and mask operations, a binary representation is assumed, and
negative numbers are represented in a variant of 2’'s complement which gives the illusion of an
infinite string of sign bits extending to the left.

Booleans These represent the truth values False and True. The two objects representing the values
False and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and
Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the exception
being that when converted to a string, the stritiggse” or"True" are returned, respectively.

14 Chapter 3. Data model

The rules for integer representation are intended to give the most meaningful interpretation of shift
and mask operations involving negative integers and the least surprises when switching between the
plain and long integer domains. Any operation except left shift, if it yields a result in the plain integer
domain without causing overflow, will yield the same result in the long integer domain or when using
mixed operands.

Floating point numbers These represent machine-level double precision floating point numbers. You are
at the mercy of the underlying machine architecture (and C or Java implementation) for the accepted
range and handling of overflow. Python does not support single-precision floating point numbers; the
savings in processor and memory usage that are usually the reason for using these is dwarfed by the
overhead of using objects in Python, so there is no reason to complicate the language with two kinds
of floating point numbers.

Complex numbers These represent complex numbers as a pair of machine-level double precision floating
point numbers. The same caveats apply as for floating point numbers. The real and imaginary parts of
a complex numbez can be retrieved through the read-only attribtesal andz.imag .

SequencesThese represent finite ordered sets indexed by non-negative numbers. The built-in flex@ion
returns the number of items of a sequence. When the length of a sequentieeisndex set contains the
numbers 0, 1, ...p-1. ltemi of sequenca is selected by i] .

Sequences also support slicirgf:i: j] selects all items with indek such thai <= k <j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it
starts at 0.

Some sequences also support “extended slicing” with a third “step” paramagtef: k] selects all items
of awith indexxwherex = i + n*k,n>=0 andi <= x<]j.

Sequences are distinguished according to their mutability:

Immutable sequencesAn object of an immutable sequence type cannot change once it is created. (If the
object contains references to other objects, these other objects may be mutable and may be changed;
however, the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character is repre-
sented by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functions
chr() andord() convert between characters and nonnegative integers representing the byte
values. Bytes with the values 0-127 usually represent the correspoading values, but the
interpretation of values is up to the program. The string data type is also used to represent arrays
of bytes, e.g., to hold data read from a file.

(On systems whose native character set isasatil, strings may use EBCDIC in their internal
representation, provided the functiocte() andord() implement a mapping betweerscii

and EBCDIC, and string comparison preservesaiell order. Or perhaps someone can propose
a better rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unit is represented by
a Unicode object of one item and can hold either a 16-bit or 32-bit value representing a Unicode
ordinal (the maximum value for the ordinal is givensiys.maxunicode , and depends on how
Python is configured at compile time). Surrogate pairs may be present in the Unicode object, and
will be reported as two separate items. The built-in functionghr() andord() convert
between code units and nonnegative integers representing the Unicode ordinals as defined in the
Unicode Standard 3.0. Conversion from and to other encodings are possible through the Unicode
methodencode and the built-in functiorunicode()

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affix-
ing a comma to an expression (an expression by itself does not create a tuple, since parentheses
must be usable for grouping of expressions). An empty tuple can be formed by an empty pair of
parentheses.

Mutable sequencesMutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignmendeinddelete) statements.

There is currently a single intrinsic mutable sequence type:

3.2. The standard type hierarchy 15

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated
list of expressions in square brackets. (Note that there are no special cases needed to form lists of
length O or 1.)

The extension modularray provides an additional example of a mutable sequence type.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript rajkdtion

selects the item indexed Wy from the mappingg; this can be used in expressions and as the target of
assignments adel statements. The built-in functidan() returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of
values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity, the reason being that the efficient implementation
of dictionaries requires a key’s hash value to remain constant. Numeric types used for keys obey the
normal rules for numeric comparison: if two numbers compare equal {eagpg1.0) then they can
be used interchangeably to index the same dictionary entry.

Dictionaries are mutable; they can be created by{thp notation (see section 5.2.5, “Dictionary
Displays”).
The extension moduledbm, gdbm, bsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see section 5.3.4, “Calls”) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section 7.5,
“Function definitions”). It should be called with an argument list containing the same number of items
as the function’s formal parameter list.

Special attributesfunc _doc or __doc __ is the function’s documentation string, Nione if un-
available;func _name or __name__ is the function’s name;__module __ is the name of the
module the function was defined in, None if unavailable;func _defaults is a tuple containing
default argument values for those arguments that have defaulsnerif no arguments have a default
value;func _code is the code object representing the compiled function bady; _globals is

(a reference to) the dictionary that holds the function’s global variables — it defines the global names-
pace of the module in which the function was definbthc _dict or __dict __ contains the
namespace supporting arbitrary function attributesc _closure is None or a tuple of cells that
contain bindings for the function’s free variables.

Of these func _code, func _defaults , func _doc/__doc __, andfunc _dict /__dict __
may be writable; the others can never be changed. Additional information about a function’s definition
can be retrieved from its code object; see the description of internal types below.

User-defined methodsA user-defined method object combines a class, a class instariéer{ej and any
callable object (normally a user-defined function).
Special read-only attributedm _self is the class instance objedt _func is the function ob-
ject;im _class is the class ofm _self for bound methods or the class that asked for the method
for unbound methods; _doc __ is the method’s documentation (sameims_func. __doc __);
__name__ is the method name (sameias_func. __name__); __module __ is the name of the
module the method was defined in,one if unavailable. Changed in version 2ith _self used
to refer to the class that defined the method.
Methods also support accessing (but not setting) the arbitrary function attributes on the underlying
function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an in-
stance of that class), if that attribute is a user-defined function object, an unbound user-defined method
object, or a class method object. When the attribute is a user-defined method object, a new method
object is only created if the class from which it is being retrieved is the same as, or a derived class of,
the class stored in the original method object; otherwise, the original method object is used as it is.

When a user-defined method object is created by retrieving a user-defined function object from a class,
itsim _self attribute isNone and the method object is said to be unbound. When one is created by
retrieving a user-defined function object from a class via one of its instances, itelf attribute is

the instance, and the method object is said to be bound. In either case, the new niethotbss

16

Chapter 3. Data model

attribute is the class from which the retrieval takes place, anidhit§unc attribute is the original
function object.

When a user-defined method object is created by retrieving another method object from a class or
instance, the behaviour is the same as for a function object, except thiat tfiegnc attribute of the

new instance is not the original method object buirits func attribute.

When a user-defined method object is created by retrieving a class method object from a class or
instance, itam _self attribute is the class itself (the same as iime_class attribute), and its
im _func attribute is the function object underlying the class method.

When an unbound user-defined method object is called, the underlying furintiofufic) is called,
with the restriction that the first argument must be an instance of the properioflassgss) or of
a derived class thereof.

When a bound user-defined method object is called, the underlying funatiarfunc) is called,
inserting the class instancen(_self) in front of the argument list. For instance, wh€ris a class

which contains a definition for a functidf) , andx is an instance dt, callingx.f(1) is equivalent

to callingC.f(x, 1)

When a user-defined method object is derived from a class method object, the “class instance” stored
inim _self will actually be the class itself, so that calling eitbef(1) or C.f(1) is equivalent

to callingf(C,1) wheref is the underlying function.

Note that the transformation from function object to (unbound or bound) method object happens each
time the attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to
assign the attribute to a local variable and call that local variable. Also notice that this transforma-
tion only happens for user-defined functions; other callable objects (and all non-callable objects) are
retrieved without transformation. It is also important to note that user-defined functions which are
attributes of a class instance are not converted to bound methodsnipisappens when the function

is an attribute of the class.

Generator functions A function or method which usestlyéeld statement (see section 6.8, “Tyield
statement”) is called generator function Such a function, when called, always returns an iterator
object which can be used to execute the body of the function: calling the iteragxt§ method
will cause the function to execute until it provides a value usingyie& statement. When the
function executes eeturn statement or falls off the end,&toplteration exception is raised
and the iterator will have reached the end of the set of values to be returned.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in func-
tionsarden() andmath.sin() (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributdsc __is the function’s
documentation string, ddone if unavailable;__name__ is the function’s name; _self __ is set
to None (but see the next item);_module __ is the name of the module the function was defined in
or None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object
passed to the C function as an implicit extra argument. An example of a built-in mettadd is
istappend() ,assuminglistis a list object. In this case, the special read-only attributself __
is set to the object denoted bgt.

Class TypesClass types, or “new-style classes,” are callable. These objects normally act as factories for
new instances of themselves, but variations are possible for class types that ovenele__() .
The arguments of the call are passed_tmew__() and, in the typical case, to_init __() to
initialize the new instance.

Classic Classe<Class objects are described below. When a class object is called, a new class instance (also
described below) is created and returned. This implies a call to the classis __() method if
it has one. Any arguments are passed on tathieit __() method. If there is na_init __()
method, the class must be called without arguments.

Class instancesClass instances are described below. Class instances are callable only when the class has
a__call __() methodx(arguments) s ashorthand fox. __call __(arguments)

Modules Modules are imported by thinport statement (see section 6.12, “Theport statement”). A
module object has a namespace implemented by a dictionary object (this is the dictionary referenced by the
func_globals attribute of functions defined in the module). Attribute references are translated to lookups in

3.2. The standard type hierarchy 17

this dictionary, e.g.m.x is equivalentton. __dict __["x"] . A module object does not contain the code
object used to initialize the module (since it isn't needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, g, = 1’ is equivalent to
‘m.__dict __[x"] =1 "
Special read-only attribute:_dict __ is the module’s namespace as a dictionary object.

Predefined (writable) attributes:_name__ is the module’s name;_doc __ is the module’s documen-
tation string, oNone if unavailable;__file __ is the pathname of the file from which the module was
loaded, if it was loaded from a file. The file __ attribute is not present for C modules that are stati-
cally linked into the interpreter; for extension modules loaded dynamically from a shared library, it is the
pathname of the shared library file.

ClassesClass objects are created by class definitions (see section 7.6, “Class definitions”). A class has a names-

pace implemented by a dictionary object. Class attribute references are translated to lookups in this dic-
tionary, e.g., C.x ' is translated toC. __dict __["x"] . When the attribute name is not found there,

the attribute search continues in the base classes. The search is depth-first, left-to-right in the order of
occurrence in the base class list.

When a class attribute reference (for cl@say) would yield a user-defined function object or an unbound
user-defined method object whose associated class is €ithieone of its base classes, it is transformed

into an unbound user-defined method object whinseclass attribute isC. When it would yield a class
method object, it is transformed into a bound user-defined method object winostass andim _self

attributes are botl. When it would yield a static method object, it is transformed into the object wrapped
by the static method object. See section 3.3.2 for another way in which attributes retrieved from a class may
differ from those actually contained in its_dict __.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).

Special attributes: _name__ is the class name;_module __ is the module name in which the class was
defined;__dict __ is the dictionary containing the class’s namespacejases __ is a tuple (possibly

empty or a singleton) containing the base classes, in the order of their occurrence in the base class list;
__doc __is the class’s documentation string, or None if undefined.

Class instancesA class instance is created by calling a class object (see above). A class instance has a namespace

Files

implemented as a dictionary which is the first place in which attribute references are searched. When an
attribute is not found there, and the instance’s class has an attribute by that name, the search continues
with the class attributes. If a class attribute is found that is a user-defined function object or an unbound
user-defined method object whose associated class is the class @abfithe instance for which the
attribute reference was initiated or one of its bases, it is transformed into a bound user-defined method
object whosem _class attribute isC whoseim _self attribute is the instance. Static method and class
method objects are also transformed, as if they had been retrieved fronCctassabove under “Classes”.

See section 3.3.2 for another way in which attributes of a class retrieved via its instances may differ from
the objects actually stored in the class’sdict __. If no class attribute is found, and the object’s class has
a__getattr __() method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class
has a__setattr __() or __delattr __() method, this is called instead of updating the instance
dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special
names. See section 3.3, “Special method names.”

Special attributes: _dict __ is the attribute dictionary; _class __ is the instance’s class.

A file object represents an open file. File objects are created bggbe() built-in function, and also

by os.popen() , os.fdopen() , and themakefile() method of socket objects (and perhaps by
other functions or methods provided by extension modules). The olggststdin , sys.stdout
andsys.stderr are initialized to file objects corresponding to the interpreter’'s standard input, output
and error streams. See tRgthon Library Referenciar complete documentation of file objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may

change with future versions of the interpreter, but they are mentioned here for completeness.

18

Chapter 3. Data model

Code objects Code objects represehyte-compilecexecutable Python code, bytecode The difference
between a code object and a function object is that the function object contains an explicit reference to
the function’s globals (the module in which it was defined), while a code object contains no context;
also the default argument values are stored in the function object, not in the code object (because
they represent values calculated at run-time). Unlike function objects, code objects are immutable and
contain no references (directly or indirectly) to mutable objects.

Special read-only attributexo _name gives the function name;o _argcount is the number of
positional arguments (including arguments with default values);nlocals is the number of lo-

cal variables used by the function (including arguments); varnames is a tuple containing the
names of the local variables (starting with the argument narges)cellvars is a tuple contain-

ing the names of local variables that are referenced by nested funatonfreevars is a tuple
containing the names of free variables;_code is a string representing the sequence of bytecode
instructions;co _consts is a tuple containing the literals used by the bytecade;names is a tu-

ple containing the names used by the bytecade;filename is the flename from which the code
was compiledco _firstlineno is the first line number of the functiorep _Inotab is a string
encoding the mapping from byte code offsets to line numbers (for details see the source code of the
interpreter),co _stacksize s the required stack size (including local variables); flags is an
integer encoding a number of flags for the interpreter.

The following flag bits are defined foco _flags : bit 0x04 is set if the function uses the
“*arguments ’ syntax to accept an arbitrary number of positional argumentsPX08 is set if

the function uses thé*keywords ' syntax to accept arbitrary keyword arguments;®R0 is set

if the function is a generator.

Future feature declarations ffom __future __ import division) also use bhits in
co_flags to indicate whether a code object was compiled with a particular feature enabled: bit
0x2000 is set if the function was compiled with future division enabled; Bit40 and 0x1000
were used in earlier versions of Python.

Other bits inco _flags are reserved for internal use.

If a code object represents a function, the first iteradn_consts is the documentation string of the
function, orNone if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see be-
low).
Special read-only attributes: _back is to the previous stack frame (towards the caller)None
if this is the bottom stack framef _code is the code object being executed in this frame;
f _locals isthe dictionary used to look up local variablés;globals is used for global variables;
f _builtins is used for built-in (intrinsic) names$;_restricted is a flag indicating whether the
function is executing in restricted execution motlejasti gives the precise instruction (this is an
index into the bytecode string of the code object).
Special writable attributed: _trace , if not None, is a function called at the start of each source code
line (this is used by the debuggef); exc _type ,f _exc _value ,f _exc _traceback represent
the most recent exception caught in this frafetineno is the current line number of the frame —
writing to this from within a trace function jumps to the given line (only for the bottom-most frame).
A debugger can implement a Jump command (aka Set Next Statement) by writidnénb.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is created
when an exception occurs. When the search for an exception handler unwinds the execution stack, at
each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section 7t#, “Biate-
ment.”) Itis accessible ag/s.exc _traceback , and also as the third item of the tuple returned by
sys.exc _info() . The latter is the preferred interface, since it works correctly when the program
is using multiple threads. When the program contains no suitable handler, the stack trace is written
(nicely formatted) to the standard error stream; if the interpreter is interactive, it is also made available
to the user asys.last _traceback
Special read-only attributesb _next is the next level in the stack trace (towards the frame where
the exception occurred), &tone if there is no next leveltb _frame points to the execution frame
of the current leveltb _lineno gives the line number where the exception occurtbd; lasti
indicates the precise instruction. The line number and last instruction in the traceback may differ from
the line number of its frame object if the exception occurred trya statement with no matching
except clause or with a finally clause.

3.2. The standard type hierarchy 19

Slice objects Slice objects are used to represent slices wddanded slice syntag used. This is a slice

using two colons, or multiple slices or ellipses separated by commasajgjgstep] , a[iij,

kAl ,oral.., ii] . They are also created by the builtslice() ~ function.

Special read-only attributestart is the lower boundstop is the upper boundstep is the step

value; each itNone if omitted. These attributes can have any type.

Slice objects support one method:

indices (self, length
This method takes a single integer argumengthand computes information about the extended
slice that the slice object would describe if applied to a sequenieagthitems. It returns a tuple
of three integers; respectively these aregtet andstopindices and thetepor stride length of
the slice. Missing or out-of-bounds indices are handled in a manner consistent with regular slices.
New in version 2.3.

Static method objects Static method objects provide a way of defeating the transformation of function
objects to method objects described above. A static method object is a wrapper around any other
object, usually a user-defined method object. When a static method object is retrieved from a class
or a class instance, the object actually returned is the wrapped object, which is not subject to any
further transformation. Static method objects are not themselves callable, although the objects they
wrap usually are. Static method objects are created by the bugtaiitmethod() constructor.

Class method objectsA class method object, like a static method object, is a wrapper around another ob-
ject that alters the way in which that object is retrieved from classes and class instances. The behaviour
of class method objects upon such retrieval is described above, under “User-defined methods”. Class
method objects are created by the buileiassmethod() constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or
subscripting and slicing) by defining methods with special names. This is Python'’s apprasmérator over-

loading allowing classes to define their own behavior with respect to language operators. For instance, if a
class defines a method namedgetitem __() , andx is an instance of this class, thgfi] is equivalent to

X. __getitem __(i) . Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined.

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of thisodéhést

interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

__init __(self,...])
Called when the instance is created. The arguments are those passed to the class constructor expres-
sion. If a base class has aninit __() method, the derived class’s_init __() method, if any,
must explicitly call it to ensure proper initialization of the base class part of the instance; for example:
‘BaseClass. __init __(self, [args..]) . As a special constraint on constructors, no value may
be returned; doing so will causelgpeError to be raised at runtime.

__del __(self)

Called when the instance is about to be destroyed. This is also called a destructor. If a base class has
a__del __() method, the derived class’s del __() method, if any, must explicitly call it to ensure
proper deletion of the base class part of the instance. Note that it is possible (though not recommended!)
for the __del __() method to postpone destruction of the instance by creating a new reference to it. It
may then be called at a later time when this new reference is deleted. It is not guaranteedigiat ()

methods are called for objects that still exist when the interpreter exits.

Note: ‘del x 'doesn'tdirectly calk. __del __() — the former decrements the reference counkfby
one, and the latter is only called wheis reference count reaches zero. Some common situations that may
prevent the reference count of an object from going to zero include: circular references between objects (e.qg.,

20 Chapter 3. Data model

a doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the
stack frame of a function that caught an exception (the traceback stosgd.exc _traceback keeps

the stack frame alive); or a reference to the object on the stack frame that raised an unhandled exception in
interactive mode (the traceback storedys.last _traceback keeps the stack frame alive). The first
situation can only be remedied by explicitly breaking the cycles; the latter two situations can be resolved
by storingNone in sys.exc _traceback orsys.last _traceback . Circular references which are
garbage are detected when the option cycle detector is enabled (it's on by default), but can only be cleaned up
if there are no Python-level_del __() methods involved. Refer to the documentation forghemodule

for more information about how_del __() methods are handled by the cycle detector, particularly the
description of theyarbage value.

Warning: Due to the precarious circumstances under whicdel __() methods are invoked, ex
ceptions that occur during their execution are ignored, and a warning is prinsyg.giderr in-

stead. Also, when_del __() isinvoked in response to a module being deleted (e.g., when execjition

of the program is done), other globals referenced by théel __() method may already have begn
deleted. For this reason, del __() methods should do the absolute minimum needed to mairjtain
external invariants. Starting with version 1.5, Python guarantees that globals whose name beging with a
single underscore are deleted from their module before other globals are deleted:; if no other refgrences
to such globals exist, this may help in assuring that imported modules are still available at thf time
when the__del __() method is called.

__repr __(self)
Called by therepr() built-in function and by string conversions (reverse quotes) to compute the “official”
string representation of an object. If at all possible, this should look like a valid Python expression that
could be used to recreate an object with the same value (given an appropriate environment). If this is not
possible, a string of the fornx:..some useful descriptiorr’.should be returned. The return value must
be a string object. If a class definesrepr __() butnot__str __() ,then__repr __() is also used
when an “informal” string representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unam-
biguous.

__str __(self)
Called by thestr() built-in function and by therint statement to compute the “informal” string rep-
resentation of an object. This differs from_repr __() in that it does not have to be a valid Python
expression: a more convenient or concise representation may be used instead. The return value must be a
string object.

__It __(self, othe}

__le __(self, othe}

__eq__(self, othe}

__ne__(self, othe}

__gt __(self, othej

__ge__(self, othej
New in version 2.1. These are the so-called “rich comparison” methods, and are called for comparison
operators in preference to_ cmp__() below. The correspondence between operator symbols and method
names is as followsx<y callsx. __It __(y), x<=ycallsx. __le __(y), x==ycallsx. __eq__(Vy),
XI=yandx<>y call x. __ne__(y), x>ycallsx. __gt __(y), andx>=y callsx. __ge__(y). These
methods can return any value, but if the comparison operator is used in a Boolean context, the return value
should be interpretable as a Boolean value, el$gm@eError will be raised. By conventiorfalse is
used for false andirue for true.

There are no implied relationships among the comparison operators. The trathyadloes not imply that
x!=yis false. Accordingly, when defining_eq__, one should also define_ne __ so that the operators
will behave as expected.

There are no reflected (swapped-argument) versions of these methods (to be used when the left argument
does not support the operation but the right argument does); rathiér,__() and__gt __() are each

other's reflection,__le __() and__ge__() are each other’s reflection, andeq__() and__ne__()

are their own reflection.

Arguments to rich comparison methods are never coerced. A rich comparison method may return

3.3. Special method names 21

Notlmplemented if it does not implement the operation for a given pair of arguments.

__cmp__(self, othe}
Called by comparison operations if rich comparison (see above) is not defined. Should return a nega-
tive integer ifself < other , zeroifself == other , a positive integer ielf > other . If no
cmp—() ,——eq__() or__ne__() operation is defined, class instances are compared by object iden-
tity (“address”). See also the description_ofhash __() for some important notes on creating objects
which support custom comparison operations and are usable as dictionary keys. (Note: the restriction that
exceptions are not propagated bycmp__() has been removed since Python 1.5.)

__rcmp __(self, othe)
Changed in version 2.1: No longer supported.

__hash __(self)
Called for the key object for dictionary operations, and by the built-in fundtash() . Should return a
32-bit integer usable as a hash value for dictionary operations. The only required property is that objects
which compare equal have the same hash value; it is advised to somehow mix together (e.g., using exclusive
or) the hash values for the components of the object that also play a part in comparison of objects. If a class
does not define a_cmp__() method it should not define a_hash __() operation either; if it defines
__cmp__() or__eq__() butnot__hash __() , its instances will not be usable as dictionary keys. If a
class defines mutable objects and implementsemp__() or __eq__() method, it should not imple-
ment__hash __() , since the dictionary implementation requires that a key’'s hash value is immutable (if
the object’s hash value changes, it will be in the wrong hash bucket).

__nonzero __(self)
Called to implement truth value testing, and the built-in operatiool() ; should returrFalse orTrue ,
or their integer equivalent or 1. When this method is not defined, len __() is called, if it is defined
(see below). If a class defines neitheden __() nor__nonzero __() , all its instances are considered
true.

__unicode __(self)
Called to implementinicode() builtin; should return a Unicode object. When this method is not defined,
string conversion is attempted, and the result of string conversion is converted to Unicode using the system
default encoding.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or
deletion ofx.name) for class instances.

__getattr __(self, namg
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance
attribute nor is it found in the class tree feglf). name s the attribute name. This method should return

the (computed) attribute value or raise/tributeError exception.

Note that if the attribute is found through the normal mechanisngetattr __() is not called. (This
is an intentional asymmetry between getattr __() and __setattr __() .) This is done both
for efficiency reasons and because otherwissetattr __() would have no way to access other at-

tributes of the instance. Note that at least for instance variables, you can fake total control by not insert-
ing any values in the instance attribute dictionary (but instead inserting them in another object). See the
__getattribute __() method below for a way to actually get total control in new-style classes.

__setattr __(self, name, valye
Called when an attribute assignment is attempted. This is called inst