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Abstract

The PVS Prelude Library is a collection of basic theories about logic, functions,
predicates, sets, numbers, and other datatypes. The theories in the prelude
library are visible in all PVS contexts, unlike those from other libraries that
have to explicitly imported. These theories also illustrate various language
features of PVS that are useful formalization aids.
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Chapter 1

Introduction

The PVS prelude is a large body of theories that provides the infrastructure for
the PVS typechecker and prover, as well as much of the mathematics needed
to support specification and verification of systems. It is worthwhile looking at
the prelude, as it also provides a rich source of examples, both for specification
and proofs.

This report is intended to serve as a roadmap to the prelude and is meant to
be read in conjunction with the prelude itself.1 Broadly speaking, the prelude
can be divided into the logic, functions, relations, induction, sets, numbers,
sequences, sum types, quotient types, and mu-calculus. These are described
below. Note that the prelude is built sequentially, and declarations must be
given prior to their use. This means that the conceptual division is not strictly
followed in the prelude.

1In PVS, M-x view-prelude-file shows the prelude, or it is available at ftp://ftp.

csl.sri.com/pub/pvs/libraries/prelude.pvs. Contributors to the prelude libraries include
Ricky Butler, Paul Miner, Bruno Dutertre, Damir Jamsek, Michael Holloway, Bart Jacobs,
and Jerry James.

1
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Chapter 2

Logic: Booleans, Equality,
Quantifiers, and
Conditionals

The first declarations are those of the the type boolean and the boolean op-
erators. Theoretically, this could be done using datatypes, but the datatype
mechanism itself relies on the boolean type, so they are defined as uninter-
preted types and functions. Equality, disequality, and IF operators are declared
polymorphically, using types as theory parameters.

2.1 booleans

The theory booleans introduces the nonempty type boolean (or, bool, for
short) with elements TRUE and FALSE, and the propositional operators for con-
junction, AND or &, disjunction, OR, implication, IMPLIES or =>, converse impli-
cation, WHEN, and equivalence, IFF or <=>.

Some axioms about these operators are given as postulates in the theory
boolean props below to indicate that these properties are actually built-in as
primitive inference rules of the PVS proof checker. The declarations given here
provide the context for typechecking PVS formulas.

2.2 equalities

A function is a symbol of type [D -> R], here D is the domain type and R is the
range type. A predicate is a function whose range type is boolean. The theory
equalities takes a single type parameter T and declares the equality symbol =
as a binary predicate over this type. Some properties of equality are given as
postulates in the theory eq props below.
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2.3 notequal

The theory notequal also takes a type parameter T and introduces the binary
disequality predicate /=.

2.4 if def

The theory if def takes a type parameter T and declares a conditional operator
IF which takes a three arguments: a boolean test argument, and a then and else
part that are both of type T. The conditional operator has a mix-fix syntax as
IF test THEN expr1 ELSE expr2 ENDIF. The axioms for the IF operator are
unspecified and built-in as primitive inference rules in the PVS proofchecker.

2.5 boolean props

The operators introduced in the theory boolean are defined here in terms of
equality and IF. The properties have already been incorporated into the prim-
itive inference rules of PVS proofchecker like FLATTEN and SPLIT.

2.6 xor def

The exclusive-or connective or boolean disequality, XOR, is defined in the theory
xor def.

2.7 quantifier props

The theory quantifier props introduces the existential and universal quanti-
fiers with respect to a type parameter t. These are binding operations so that
the occurrences of x and y in x /= y are bound in EXISTS x, y: x /= y.

2.8 defined types

The theory defined types introduces pred[t] and setof[t] as abbreviations
for the predicate type [t -> bool].

2.9 exists1

The unique existence quantifier is defined in the theory in the theory exists1.
It illustrates how a second-order operator like exists1 can be turned into a
binding operator as exists1!.

3



2.10 equality props

Postulates about equality and IF are given in equality props. The congruence
postulate is given in the theory functions below.

2.11 if props

A couple of simple properties of conditionals are given in if props. These are
given in a separate theory and not in if def since two type parameters are
required.

4



Chapter 3

Functions

As PVS is based on higher-order logic, functions are the basis for much of
the expressive power of the language. There are several theories that de-
velop definitions and lemmas, including injective, surjective, and bijective func-
tions, the restriction and extension conversions, and the K conversion, which is
important for triggering lambda conversions, described in the PVS language
manual [4]. The function inverse is defined in two different ways. Theory
function inverse def defines relations that hold between a function and its
inverse, without actually defining an inverse. Theory function inverse de-
fines the inverse in terms of the epsilon function, which requires the domain
type to be nonempty. Theory function inverse alt weakens this restriction
by including an assumption that either the domain is nonempty or the range is
empty. Function image is defined, and a number of theories developing proper-
ties of functions are provided.

3.1 functions

The functions theory provides the basic properties of functions. Because of the
type equivalence of [[t1,...,tn] -> t] and [t1,...,tn -> t], this theory
handles any function arity. However, it doesn’t handle dependent function types,
since the domain and range cannot be given as independent parameters.

Extensionality and congruence postulates are given, as well as the related
eta lemma. The injective?, surjective?, and bijective? predicates are
defined, as well as judgements relating them. The domain and range types are
defined. The graph function converts a function to a relation. The preserves
(inverts) predicate holds for a given function f and relations RD, RR over the
domain and range, respectively, if xRDy then f(x)RRf(y) (f(y)RRf(x)).

5



3.2 functions alt

This simply redefines the preserves and inverts functions in a theory where
the RD and RR relations are theory parameters. This is useful for working with
a fixed pair of relations; the instance may be specified in an importing, rather
than in each use of these functions.

3.3 restrict

restrict is the restriction operator on functions, allowing a function defined
on a supertype T to be turned into a function over a subtype S. It is made
a conversion that is automatically inserted by the typechecker to correct type
mismatches. The fact that the restriction of an injective function is injective
is noted as a lemma and a judgement. The typecker annotates a term by the
more refined type information provided by such judgements. Thus, whenever
the restrict operation is applied to a function that is known to be injective,
the resulting function is also known to be injective.

3.4 restrict props

This simple theory just notes that restrict is the identity when the subtype
is not a proper subtype.

3.5 extend

The function extend is the inverse of restrict. The difference is that there
is only one possible restriction, whereas in general there are a large number of
possible extensions to a given function. The form of extension provided by this
theory just uses a provided default element of the range type that all elements
of the domain extension are mapped to. The restrict extend lemma says that
the restriction of an extension is the identity.

3.6 extend bool

Though extend is generally not useful as a conversion, when the range type
is boolean it makes sense to make the default value false. This allows, for
example, predicates on natural numbers to be treated as predicates on integers
(equivalently, sets of natural numbers as sets of integers). This theory simply
introduces this conversion.

6



3.7 extend props

extend props provides the lemma that extending a function from a given do-
main type to the same type is the identity. This usually comes about because
of theory instantiation, and the typechecker has this rule built in, so that it is
not needed in general.

3.8 extend func props

This theory simply provides the judgement that the extension of a surjective
function is surjective.

3.9 K conversion

The K combinator, called K conversion, is defined here as λx.λy.x. When en-
abled as a conversion, it triggers lambda-conversions, as described in the PVS
language reference [4]. This is useful as a way of formalizing states and com-
putations over states within higher-order logic. The conversion is not enabled
by default, because the typechecker frequently finds ways to mask type errors
by applying this, leading to unintended specifications that are not noticed until
proofs are attempted.

3.10 K props

This theory provides judgements that K conversion preserves subtypes.

3.11 identity

This defines the parametric identity function as I, id or identity. Any of
the identifiers I, id, or identity may be used. All three are declared to be
bijective.

3.12 identity props

This theory provides judgements that the identity function preserves subtypes.

3.13 function inverse def

This provides the function inverse relations, but does not actually define the
inverse function, see function inverse and function inverse alt for two
possible definitions. This theory defines the left-, right-, and two way inverse

7



relations, provides a number of lemmas relating these to other functional rela-
tions, for example, surjectivity and injectivity, and provides existence lemmas
that are enough to discharge the assumptions that need to be discharged if the
function inverse alt theory is used.

3.14 function inverse

This theory defines the inverse function in terms of the epsilon function
(see epsilons below), and hence requires that the domain type parameter be
nonempty. The rest of the theory relates inverse to other functional properties
such as injectivity and surjectivity, and provides corresponding judgements.

3.15 function inverse alt

This theory provides an alternative definition for inverse, called inverse alt,
but with fewer restrictions: the domain is nonempty or the range is empty.
When the domain is known to be nonempty, function inverse is generally
easier to work with. Judgements are provided for inverse alt. The existence
lemmas of function inverse def may be usedful in discharging the assump-
tions that result from using this theory.

3.16 function image

This theory provides the image and inverse image functions, in both curried
and uncurried forms. inverse image is not the same as inverse; it is defined
for all functions, not just injections, and returns a set. Several lemmas are
provided relating these to various set operations.

3.17 function props

This theory defines the functional composition operator o, provides the judge-
ments that composition of pairs of injective, surjective, and bijective functions
are respectively injective, surjective, and bijective, and states lemmas that relate
composition to the image, preserves, and inverts functions.

3.18 function props alt

function props alt gives judgements relating composition to the preserves
and inverts operators. The difference is that this theory has the relations as
parameters rather than as variables. Thus this theory is easier to use if the
relations are fixed.

8



3.19 function props2

This theory simply states that composition is associative. It needs a separate
theory in order to provide enough type parameters.

3.20 operator defs

The operator defs theory provides the predicates associated with operators,
e.g., the plus and times operators associated with a ring. It provides the
predicates commutative?, associative?, left identity?, right identity?,
identity?, has identity?, zero?, has zero?, inverses?, has inverses?,
and distributive?.

3.21 function image aux

This theory defines judgements and lemmas that show that the image of a
function on a finite set is finite, that the cardinality of the image of a set is less
than or equal to that of the set, and equal when the function is injective, and
that the image of an injective function is equipotent (i.e., there is a bijection)
to the domain.

3.22 function iterate

Provides a way to iterate a function application n times, i.e.,

fn(x) =

n︷ ︸︸ ︷
f(· · · (f(x))).

Lemmas such as fm ◦ fn = fm+n are also provided.

3.23 PartialFunctionDefinitions

Two representations of partial functions are described, and shown to be iso-
morphic. SubsetPartialFunction is defined as a dependent record type, and
LiftPartialFunction is defined on the lifted range type. In practice, the for-
mulation based on lift is more convenient, because definitions are easier and
fewer TCCs are generated.

3.24 PartialFunctionComposition

This theory defines composition operators for the partial functions defined
above.

9



Chapter 4

Relations

Relations play an important role in specifications of systems, and the prelude
provides many useful definitions and properties, including reflexivity, equiva-
lence, preorders, partial orders, well orderings, and least upper bounds and
greatest lower bounds.

4.1 relations

The relations theory defines relational predicates, including reflexive?, ir-
reflexive?, symmetric?, antisymmetric?, connected?, transitive?, and
equivalence?.

4.2 orders

The orders theory defines the usual ordering predicates: preorder?, partial-
order?, strict order?, dichotomous?, total order?, linear order?, tri-
chotomous?, strict total order?, well founded?, well ordered?, upper-
bound?, lower bound?, least upper bound?, and greatest lower bound?.

Numerous judgements relating these predicates are also provided.

4.3 orders alt

The orders alt theory defines upper bound?, least upper bound?, lower-
bound?, and greatest lower bound?, but with theory parameters providing

the order and subset. This is useful when the order and subset are fixed.

4.4 restrict order props

This theory provides a set of judgements that the restriction of certain relations
to a subtype still satisfy the relations. For example, the restriction of a reflexive

10



relation is reflexive.

4.5 extend order props

This theory provides a set of judgements stating that the extension of certain
relations to a supertype still satisfy the relations. For example, the extension of
an irreflexive relation is irreflexive. The extension in this case is such that the
relation is false on elements of the extension.

4.6 relation defs

This theory defines more general relations between two possibly distinct types.
It defines the operators domain, range, image, preimage, postcondition,
precondition, converse, isomorphism?, total?, and onto?.

4.7 relation props

This defines the relational composition operator o and judgements and lemmas
relating to it.

4.8 relation props2

Proves associativity of the relational composition operator. This is needed in a
separate theory in order to provide the right number of types.

4.9 relation converse props

This theory provides a set of judgements that state that the converse of certain
relations satisfies the relation. For example, the converse of a reflexive relation
is reflexive.
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Chapter 5

Induction

Induction is important in proving properties of systems. The prover induct rule
can make use of these induction lemmas. There are other induction lemmas in
the prelude, that are all variants of natural number induction; see Section 7.

5.1 wf induction

This defines the well-founded induction schema wf induction.

5.2 measure induction

measure induction builds on well-founded induction. It allows induction over
a type for which a measure function is defined.
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Chapter 6

Sets

Sets in PVS (as in most higher-order logics) are represented as predicates, i.e.,
functions from a given type to boolean. Membership is thus simply application
of a set to an element; the element belongs to the set if the application returns
true. This means that a set may be given in either of the equivalent forms {x:
T | p(x)} or LAMBDA (x: T): p(x).

All the usual set theoretic operators are available, e.g., union, intersec-
tion, difference, and powerset. There are also Union and Intersection, for
use on sets of sets, and IUnion and IIntersection for indexed sets.

A notion of ordinal is defined, based on Cantor normal form. This only
produces ordinals up to ε0, transfinite induction is not possible with this. To
do transfinite induction, set theory should be developed axiomatically within a
single (non-parametric) theory. Since the primary use of PVS is for specification
of systems, this has not been done. However, finite sets are very important, and
the basic definitions and lemmas are in the prelude. There is also a finite sets
library that builds on this. Infinite sets are also defined, though there is no
cardinality function for these.

6.1 epsilons

epsilons provides the Hilbert epsilon function. This acts as a “choice” function.
The domain type must be nonempty, but the predicate need not be. Given a
predicate over the parameter type, epsilon produces an element satisfying that
predicate if one exists, and otherwise produces an arbitrary element of that type.
Note that because the type parameter is given as nonempty, a nonempty TCC
may be generated when this is used.

6.2 sets

Sets are modeled as predicates. The sets theory defines the usual set operators
member, empty?, emptyset, nonempty?, full?, fullset, subset?, strict sub-
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set?, union, intersection, disjoint?, complement, difference, symmet-
ric difference, every, some, singleton?, singleton, add, remove, choose,
the, rest, powerset, Union, and Intersection.

6.3 sets lemmas

Several lemmas are provided about the operators defined in sets. These gen-
erally follow the lemmas and exercises provided in any introductory text on Set
Theory (for example, Halmos [1]).

6.4 indexed sets

This defines the IUnion (
⋃
i∈I Ai) and IIntersection (

⋂
i∈I Ai) operations,

and lemmas about them.

6.5 finite sets

The finite sets theory develops finite sets as a subtype of sets for which there
is an injection to a prefix of the natural numbers. Cardinality is defined, and
several lemmas and judgements are provided (for example, the union of finite
sets is finite).

6.6 restrict set props

This theory provides a set of judgements and lemmas that the restriction of a
finite set to a subtype is still finite, and its cardinality is smaller.

6.7 extend set props

This theory provides a set of judgements and lemmas relating to the extension of
a set. For example, that the extension of a finite set is finite, and the cardinality
is the same.

6.8 ordstruct and ordinals

The ordstruct datatype provides the constructible ordinals. These are the

ordinal numbers below ε0 (= ωω
ω.
..

). They are either zero or of the form
nωα + β, where α and β are of type ordstruct, and n is a positive integer.
As with ordinary polynomials, it is more convenient to work with ordstructs
if they are given in canonical form, where terms of higher degree precede those
of lower degree. This is the purpose of the ordinals theory, which defines
the order < and defines the ordinal type to consist of those ordstructs that
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respect the order. This essentially works with canonical representatives of an
equivalence class. Note that although this is a large ordinal number, it is still
countable (has cardinality ℵ0). More discussion about ε0 may be found in [2,
pp. 476–479].

6.9 infinite sets def

This defines the notion of an infinite set and provides theorems and judgements
similar to those for finite sets. No notion of cardinality is given, however.

6.10 finite sets of sets

This theory gives several judgements such as that the powerset of a finite set is
finite, and the union of a finite number of finite sets is finite.
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Chapter 7

Numbers

The usual practice in mathematics is to start from the natural numbers (e.g.,
the Peano axioms), and build integers as equivalence classes of pairs of nats,
rationals as equivalence classes of pairs of integers, and reals as equivalence
classes of Cauchy sequences or Dedekind cuts. This is very nice for foundations,
but cumbersome to use in practice. In PVS we take the axiomatic approach
and reverse this; the universal number type is given, and the rest are subtypes
of it. The number type is completely uninterpreted, though it contains all the
numerals. The number field type introduces the field operators and axioms.
The reason for introducing it is that, for example, the complex numbers may
be introduced as a subtype of number field with an axiom that it contains
all reals plus new constant i, and the operators may simply be used, without
having to extend them. This would not work with the reals, as they include
an ordering that is incompatible with the complex numbers. Of course, other
number systems could be inserted as well, for example the nonstandard reals.

The axioms used for the number fields and reals were taken from Royden [6].
Note that many of the real axioms and lemmas are already “known” to the
decision procedures, but nonlinear properties frequently require the use of the
axioms or lemmas. The real props theory is useful in this regard, and using it
as an auto-rewrite-theory can make proofs a lot simpler.

7.1 numbers

This provides the top number type, of which all other number types are subtypes.
All of the numerals are implicitly of this type.

7.2 number fields

number fields defines the type number field, the field operations +, - (unary
and binary), *, and /, and the field axioms. Note that any field containing
the reals (e.g., nonstandard reals, complex numbers) could be made a subtype
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of this. In the following example, there is no need to create new declarations
for the field operators, and no representations are needed; the real numbers are
already complex numbers. Note that the decision procedures are still sound,
because they only interpret these operators when the operands are known to be
real.

complex: THEORY
BEGIN
complex: NONEMPTY_TYPE FROM number_field
real_are_complex: AXIOM FORALL (x: real): complex_pred(x)
JUDGEMENT real SUBTYPE_OF complex
nonzero_complex: NONEMPTY_TYPE
= {c: complex | c /= 0} CONTAINING 1

nzcomplex: NONEMPTY_TYPE = nonzero_complex

i: complex
i_ax: AXIOM i * i = -1

rep_exists: AXIOM
FORALL (c: complex): EXISTS (x, y: real): c = x + y*i

rep_unique: AXIOM
FORALL (x1, x2, y1, y2: real):
x1 + y1*i = x2 + y2*i <=> (x1 = x2 & y1 = y2)

END complex

7.3 reals

The reals theory defines the real type as a subtype of number field, defines
closure judgements for the field operators, and adds the order operators <, <=,
>, and >=. The numerals implicitly belong to this type.

7.4 real axioms

This theory simply gives the order axioms for the reals: the sum and product
of positive reals is positive, the negation of a positive real is not positive, and
every real is greater than, equal to, or less than 0.

7.5 bounded real defs

The bounded real defs theory provides definitions for upper bound?, lower-
bound?, least upper bound?, and greatest lower bound?, then gives the

completeness axiom real complete for the reals: every nonempty set with an
upper bound has a least upper bound. The corresponding lemma real lower-
complete for lower bounds is also provided.
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bounded above?, bounded below?, bounded?, lub, and glb are also defined
along with some related lemmas.

7.6 bounded real defs alt

This theory provides alternative definitions for upper bound?, lower bound?,
least upper bound?, and greatest lower bound? where the nonempty set is
provided as a theory parameter. This is useful when the set is fixed.

7.7 real types

The real types theory defines useful subtypes of reals: nonneg real, nonpos-
real, posreal, and negreal, and provides several judgements relating these

and the field operators.

7.8 rationals

This theory defines the rationals as an uninterpreted subtype of real, and pro-
vides closure judgements for the field operators. The numerals implicitly belong
to the rationals.

7.9 integers

integers defines the integer type, along with the upfrom, above, nonneg int,
nonpos int, posint, and negint, subrange, even int, and odd int types. It
provides lots of judgements. The numerals implicitly belong to the integers.

7.10 naturalnumbers

naturalnumbers defines the natural number type (also known as the whole
numbers) and the upto and below types. succ, pred, and natural number
minus ( , sometimes called monus) are defined, and finally weak and strong
natural number induction lemmas are given. The numerals implicitly belong to
the natural numbers.

7.11 min nat

This theory defines the minimum min of a set of natural numbers.
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7.12 real defs

real defs defines the sign function sgn, absolute value abs, maximum and
minimum functions max and min, and several judgements involving these.

7.13 real props

This theory provides dozens of lemmas about real numbers. Many of them
are especially useful in dealing with nonlinear arithmetic, which are (necessar-
ily) incomplete in the decision procedures. This theory can be used in the
auto-rewrite-theory prover command, which often makes proofs involving
real number arithmetic simpler.

7.14 rational props

rational props gives the axiom that any rational number is the quotient of
two integers, and lemmas stating the density of the rationals.

7.15 integer props

This provides several lemmas about integers and natural numbers, including
specialized least upper bound (lub) and greatest lower bound (glb) properties.

7.16 floor ceil

floor ceil defines the floor and ceiling functions, and gives several lemmas
and judgements pertaining to them.

7.17 exponentiation

exponentiation provides the definitions expt and ^. expt multiplies a real by
itself the number of times specified, where 0 times returns a 1 (thus expt(0,0)
= 1). ^ is defined in terms of expt to work for integers, but in this case if
the integer is negative then the real argument must be nonzero; this leads to a
dependent type. Several properties and judgements are also provided.

7.18 euclidean division

This defines the mod function, and the Euclidean algorithm properties are given
declaratively.
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7.19 divides

This defines the divides relation between integers and provides lemmas and
judgements accordingly.

7.20 modulo arithmetic

This defines the rem and ndiv functions, and proves several lemmas about these
operations.

7.21 subrange inductions

This provides induction lemmas for the subrange type, suitable for use in the
prover induction commands.

7.22 bounded int inductions

This theory provides induction lemmas for the upfrom and above types, suitable
for use in the prover induction commands.

7.23 bounded nat inductions

This theory provides induction lemmas for the upto and below types, suitable
for use in the prover induction commands.

7.24 subrange type

This theory defines the subrange type in a parameterized theory, mostly for
backward compatibility.

7.25 int types

This just defines the upfrom and above types in a parameterized theory, mostly
for backward compatibility.

7.26 nat types

This theory defines the upto and below types in a parameterized theory, mostly
for backward compatibility.
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7.27 nat fun props

Special properties of injective, surjective, and bijective functions over the natural
numbers.

7.28 lex2

lex2 provides a lexical ordering for pairs of natural numbers. This illustrates
the use of ordinals.

7.29 exp2

This theory defines the exp2 function, which is simpler to use than expt for
defining the bitvector theories.
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Chapter 8

Sequences, lists, strings,
and bitvectors

Sequences, finite sequences, lists, strings and bitvectors are treated in this chap-
ter. Strings are built from characters, which are in this chapter.

Bit vectors are defined parameterized by the word size. The basic operations
and their properties are given in the prelude. More extensive development is
provided with the bitvector library.

8.1 sequences

sequences provides the polymorphic sequence type sequence, as a function
from natural numbers to the base type. The usual sequence functions nth,
suffix, first, rest, delete, insert, and add are also provided. Note that
these are infinite sequences, and do not contain finite sequences as a subtype.

8.2 seq functions

seq functions defines the map function that generates a new sequence by ap-
plying a given function pointwise over the input sequence.

8.3 finite sequences

Finite sequences are defined as a dependent record type finite sequence, with
the length as the first field and a seq as a function from the natural numbers
below length to the base type. The emptyseq is defined, and a conversion is
provided that allows a finite sequence to be applied to an index directly, without
having to extract the seq. Composition o and concatenation ^ are defined. The
extract1 conversion is provided, that lets a sequence of length 1 to be treated as
the single element. Finally the associativity of composition lemma is provided.
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8.4 list

This defines the list datatype, with constructors null and cons, recognizers
null? and cons?, and cons accessors car and cdr. See the PVS langauge
manual [4] or the PVS datatype report [5] for details.

8.5 list props

list props provides the length, member, nth, append, and reverse functions.
Several related lemmas are given.

8.6 map props

map props gives the commutativity properties of composition and map, for both
sequences and lists.

8.7 filters

filters defines filter functions for sets and lists, which take a set (list) and
a predicate and return the set (list) of those elements that satisfy the predicate.
Both the curried and uncurried forms are given.

8.8 list2finseq

This theory defines conversion function lsit2finseq from lists to finite se-
quences, and the inverse conversion, finseq2list.

8.9 list2set

This theory provides a conversion function list2set from lists to sets. Note
that the other direction is not defined, though it could be, through the use of a
choice function.

8.10 disjointness

The disjointness theory defines the pairwise disjoint? function. This
allows pairwise disjointness to be stated more succinctly.

8.11 character

The character datatype follows the ASCII control codes, of which only the first
128 are defined. This is used as the base type for strings. Note that because of
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the extend1 conversion, there is no need for special syntax for characters, for
example, "f" = char(102) is type correct, and easily proved.

8.12 strings

The strings theory introduces the char type and defines the type string
as a finite sequence of chars. The string rep lemma shows how strings are
represented internally. The other lemmas are useful for rewriting. This theory
is useful to auto-rewrite with, but make sure that list2finseq is not also an
auto-rewrite rule.

8.13 bit

A bit is a boolean, a nbit is either 0 or 1. The b2n conversion allows boolean
values to be treated as nbits.

8.14 bv

The bv theory defines the bitvector type bvec, the useful bitvector constants
bvec0 and bvec1, and the fill function and bit extraction operator ^.

8.15 bv cnv

This simply defines the fill[1] function to be a conversion.

8.16 bv concat def

This theory defines the concatenation operator o for bitvectors.

8.17 bv bitwise

Defines bit-wise logical operations OR, AND, IFF, NOT, and XOR on bit vectors,
and provides some lemmas relating them to bit extraction.

8.18 bv nat

Provides functions bv2nat and nat2bv that map bitvectors to natural numbers
and vice versa. Several related lemmas are provided.
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8.19 empty bv

Defines the empty bitvector empty bv.

8.20 bv caret

The extractor operation ^ decomposes a bvec into smaller bit vectors. A few
lemmas are also provided.
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Chapter 9

Sum types

9.1 lift

The lift datatype adds a bottom element to a given base type. This is useful for
defining partial functions as seen in the PartialFunctionDefinitions theory.

9.2 union

The union datatype provides a way of doing binary coproducts (also known as
sums or cotuples). This is here mostly for backward compatibility, as the cotuple
type constructor, introduced in PVS 3.0, removes the need for this type.
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Chapter 10

Quotient types

Quotient types are important in mathematics, where it is common to introduce
an equivalence relation and define a new structure as a set of equivalence classes,
with operations “lifted” to the new structure. This is provided in the follow-
ing theories. Note that one imoprtant use of this is in theory interpretations,
where one often wants to interpret a type as an equivalence class. See the PVS
Language Manual [4] or the PVS Theory Interpretations report [3].

10.1 EquivalenceClosure

This theory provides the higher order definition of equivalence relation closure
EquivalenceClosure and several lemmas.

10.2 QuotientDefinition

QuotientDefinition defines the equivalence class function EquivClass, the
equivalence class representative function repEC, the Quotient type, and the quo-
tient type representative function rep. quotient map is similar to EquivClass,
but with a different range type, making it surjective. The ECQuotient type and
ECquotient map function are defined over arbitrary relations using Equiva-
lenceClosure.

10.3 KernelDefinition

The EquivalenceKernel relation is defined on a function, and preserves lemmas
are provided.
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10.4 QuotientKernelProperties

This theory provides lemmas and judgements relating EquivalenceKernel,
Quotient, and quotient map.

10.5 QuotientSubDefinition

This provides QuotientSub and quotient sub map. These are restrictions of
Quotient and quotient map to a subtype.

10.6 QuotientExtensionProperties

This defines the lift function that lifts a function to a quotient. It does it
using QuotientSub, in order to handle restricted functions properly.

10.7 QuotientDistributive

This theory makes clear that quotients commute with products: there is an
isomorphism

[X/S, Y ] ' [X,Y ]/EqualityExtension(S)

given by the canonical map (from right to left). Such distributivity results
can be used to define functions with several parameters on a quotient. In the
presence of function types, this can also be done via Currying. The result is
included here mainly as a test for the formalisation of quotients.

10.8 QuotientIteration

In this theory it will be shown how successive quotients can be reduced to a
single quotient:

(X/S)/R ' X/action(S)(R)

again via the canonical map.
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Chapter 11

Mu-calculus and CTL

These theories define predicate transformers, monotonicity, and the mu and nu
operators as the least and greatest fixed points. The Computation Tree Logic
(CTL) is then defined in terms of the mu-calculus. Note that the model checker
built into PVS is based on the mu-calculus. Various forms of fairness are also
provided.

11.1 mucalculus

This defines the predicate transformer type, monotonic?, fixpoint?, lfp?,
and gfp? predicates, and the glb, lub, lfp, gfp, mu, and nu functions. The
induction lemmas lfp induction and gfp induction are also provided.

11.2 ctlops

This defines the basic CTL temporal operators EX, EG, EU, EF, AX, AF, AG, and
AU in terms of the mu-calculus. No fairness is built in.

11.3 fairctlops

Fair versions of CTL operators where fairAG(N, f)(Ff)(s) means f always
holds along every N-path from s along which the fairness predicate Ff holds
infinitely often. This is different from the usual linear-time notion of fairness
where the strong form asserts that if an action A is enabled infinitely often, it
is taken infinitely often, and the weak form asserts that if any action that is
continuously enabled is taken infinitely often.
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11.4 Fairctlops

Fair versions of CTL operators with lists of fairness conditions. The expression
FairAG(N,f)(Fflist)(s) means f always holds on every N-path from s along
which each predicate in Fflist holds infinitely often.
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